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1 Part A

1.1 Introduction

This assignment focused on the implementation of the A* algorithm to generate 2-D paths that navigate between

start and goal locations while avoiding obstacles. Additionally, we were asked to implement a simple controller that

enables a wheeled mobile robot to drive the A* generated paths. A* is the most common type of informed search

strategy. These strategies use functions known as heuristic functions that provide insight on the location of goals [1].

This robot is based on a differential wheeled robot, its configuration can be fully described by its position in 2-D

space and its orientation [x, y, θ]. This problem setup can be seen below in Figure 1. Furthermore, the robot is

commanded to move through the linear and rotational velocities [v, ω] shown in Figure 1. Also shown in Figure 1 is

the setup to find the distance and heading from the robot to a given point. This will be referenced later in Part B.

Figure 1: Configuration of mobile robot in 2-D space (left) and problem setup to find distance from robot to given
point (right).

1.1.1 Occupancy Grid (Q1)

The A* algorithm operates within a discrete world finding paths between nodes n to the goal node. Since robots must

operate in the real world, which is continuous, we need to discretize space in some way to use the A* algorithm. One

popular method is to use an occupancy grid, first introduced in 1985 by Moravec and Elfes who used this method

to represent the probability that an area was occupied as determined by sonar measurements and their algorithm [2].

In this case, I use the occupancy grid to represent the world discretely, as did Moravec and Elfes, but there is no

distribution for the occupancy probability. Rather, I know exactly which cells are occupied and which are not. I used

the landmark locations of ds1 in homework 0. The occupancy grid, as seen in Figure 2, shows the world cut into 1

meter squares. An entire square is occupied if a landmark is located inside. Thus, a continuous world represented

by coordinates [x, y] is also represented by cells with indexes denoted by [i, j]. In order to allow for free conversion

between coordinates and cell indices, I chose to represent the cell by its bottom left corner or minimum allowable

values.
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Figure 2: Visualization for occupancy grid with scale of 1 meter (left) and 0.1 meters (right).

1.2 Offline A* Algorithm

1.2.1 Implementation (Q2)

The A* algorithm operates starting from the start node and moves towards the goal node. It estimates the cost of

all nodes in the open set (initialized as nodes neighboring the start node) and chooses the lowest cost node. Then,

it adds all neighboring cells of the chosen cell to the open set and then repeats this process until it reaches the goal

node. Finally, following the expansion of the nodes in reverse from end to start, the algorithm provides the optimal

path to the goal.

This summary is reinforced by Equation 1- 3 which define the evaluation function f(n) in terms of the true cost g(n)

(provided by the instructor) and the heuristic h(n). The evaluation function is the function that estimates the cost

of the cells in the open set. The A* algorithm is cost-optimal due to the characteristics of the heuristic, namely its

admissibility. A heuristic is admissible if it never overestimates the cost to reach a goal. This makes A* cost-optimal,

since it will always find the lowest cost path [1].

My heuristic is the euclidean distance between the center coordinates of a cell and the center coordinates of the goal

cell. This heuristic is admissible because the euclidean distance between the center of two cells will never be greater

than 1. That is, as defined by g(n), the true cost of the transition between two cells that are not occupied. This proof

is shown in Figure 3. This comes with one major caveat and modification: if the scale of the grid is larger than 1

meter then this heuristic is no longer admissible since the euclidean distance between two cells will be greater than

1. This condition for admissibility is given below in Equation 4. The solution would be to scale the heuristic by a

factor of 1
s where s is the scale of the grid. Since this case is not considered in this homework, I did not implement

such a heuristic.

This A* implementation is offline because it is able to trace back from the goal to the start point, and eliminate any

extra nodes visited. This type of pruning would not be possible in an online scenario and is the main difference
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between this and the online implementation.

f(n) = g(n) + f(n) (1)

g(n) =


1, if neighbor cell n is unoccupied

1000, if neighbor cell n is occupied
(2)

h(n) =
√
(xcentergoal − xcentern )2 + (ycentergoal − ycentern )2 (3)

h(n1) = d = s ≤ g(n1) ⇐⇒ s ≤ 1 (4)

Figure 3: Problem set up for admissibility proof of my heuristic.

1.2.2 Testing (Q3)

To test the offline A* implementation, I passed in the following sets of points in Table 1, the results of which can be

seen in Figure 4.

Set ID Start [x, y] End [x, y]

A [0.5, -1.5] [0.5, 1.5]
B [4.5, 3.5] [4.5, -1.5]
C [-0.5, 5.5] [1.5, -3.5]

Table 1: Point sets A, B, and C passed into A* algorithm.
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Figure 4: Results from testing Offline A* algorithm from specified start to goal points. From right to left, results for
A, B, and then C.

1.3 Online A* Algorithm

1.3.1 Implementation (Q4)

As mentioned previously, the major difference between Online and Offline A* is that the algorithm is no longer able

to prune the path for unnecessary node visitation. This is because in the Online case, the robot is physically moving

to each node as the A* algorithm plans a path. This is more realistic because often a robot may not be able to observe

if a cell is occupied until the cell is the robots physical neighbor. This is another way of saying that the robot does

not have a priori knowledge of the obstacles. So, the only modification I made to my A* algorithm from step 2 was

to remove the pruning step that occurs at the end of the algorithm run.

1.3.2 Testing (Q5)

The results for the Online implementation of A* are in Figure 5. The only key difference between the results of the

Online and Offline implementation is seen in the results for point set B where the Online algorithm takes an extra

step. This is consistent with our expectations for the Online implementation.
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Figure 5: Results from testing Online A* algorithm from specified start to goal points. From right to left, results for
A, B, and then C.

1.4 Higher Resolution Grid

1.4.1 Implementation (Q6)

The higher resolution grid, with cell side length of 0.1 meters, provides a more realistic representation of the world.

Since the landmarks likely take up space larger than their 0.1 by 0.1 meter grid cell, I inflated their size to be 0.6 by

0.6 meter squares. Otherwise, my implementation for the grid was exactly analagous to the 1 meter scaling.

1.4.2 Testing (Q7)

To test the Online A* implementation on the higher resolution grid, I passed in the following sets of points in Table 2,

the results of which can be seen in Figure 6.

Set ID Start [x, y] End [x, y]

D [2.45, -3.55] [0.95. -1.55]
E [4.95, -0.05] [2.45, 0.25]
F [-0.55, 1.45] [1.95. 3.95]

Table 2: Point sets D, E, and F passed into A* algorithm.
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Figure 6: Results from testing Online A* algorithm on the higher resolution grid from specified start to goal points.
From right to left, the results for point sets D, E, and F.

2 Part B

2.1 Offline Controller

2.1.1 Implementation (Q8)

The offline controller emulates a differential wheeled robot driving on the Online A* generated path. Thus, the A*

algorithm acts as a high level controller providing a list of way-points to follow, while the Offline Controller acts

as a low level controller that generates velocity commands to move the robot along this path. So, the high level

controller operates by commanding the robot to a specified way-point along the A* generated path until it reaches

the point within a tolerance (calculated in Equation 5), and then commands the robot to the next point and so on. I

made two specific modifications to this high level controller setup. First, the high level controller operates with a

high tolerance of 0.25 times the scale size until the last (goal) point at which point it switches to a tight tolerance

of 0.01 meters. This modification helps to keep the robot moving smoothly between cells and avoids getting stuck

searching for a specific point in space while still achieving the goal coordinates with high precision. Next, the high

level controller augments the A* commanded cell coordinates if the cell is neighboring an occupied cell. This is

because if the robot is traveling near an obstacle, I wanted to make sure it gave a wide berth to the obstacle. Thus,

the high level controller will search for obstacles neighboring the next point and shift the goal position away from

the obstacle by 0.75 times the scale of the grid.

For the low level controller operation, the robot operates entirely on the heading error, seen in Equation 6, which

is the difference in radians between the current robot heading and the direction of the goal point. I designed this

controller uses a state machine for the robot. The robot has a state for its rotational and linear motion. The rotational

state is determined by the sign of the heading error, positive corresponding to LEFT and negative corresponding to

RIGHT. The rotational state of the robot is never stopped, it is always turning towards the goal point. The robot
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will turn towards the goal point until it is within 0.1 radians of tolerance before moving forward towards the goal.

Up until this point, the robot linear state has been STOPPED. Once it is pointed towards the goal point, its linear

state changes to FORWARD. This state machine for linear and rotational motion is essentially bang-bang control;

however, it is highly effective in this setting.

Finally, the controller must convert the robot velocity states to actual velocities. The robot acceleration is limited to

v̇ = 0.288m
s2

and ω̇ = 5.579 rad
s2

. Since I am using bang-bang control, the controller applies the maximum accelera-

tion depending on the state. If it is FORWARD or LEFT the controller applies maximum positive acceleration, and

in the reciprocal case it applies maximum negative acceleration. I do not want the robot to move backwards in the

STOPPED state. Therefore, I instituted speed clamping on the controller. The angular velocity ω is limited between

[1.0,−1.0] rads and the linear velocity v is limited between [0.0, 10.0]ms . This completes the low level controller.

Also, to make this more realistic I added noise to the system. This represents how issues such as slip may result

in outcomes that are different than those expected by the controller. I applied this noise during the state transition

step as a randomly selected number between [−0.01, 0.01] for each of the components of the robot configuration

[x, y, θ]. This turned the robot driving paths from straight lines to squiggly paths as the controller compensated for

the unpredictable outcomes of its commands.

distance =
√

(xgoal − xcurrent)2 + (ygoal − ycurrent)2 (5)

heading error = arctan(
ygoal − ycurrent
xgoal − xcurrent

)− θr (6)

2.1.2 Testing (Q9)

I tested the Offline controller on the paths generated by the Online A* implementation. The results are in Figure 7.

Note how the controller gives a wide berth to the obstacles while still following the A* generated path. On trials

where there are no neighboring obstacles, the path is not altered.

Figure 7: Results from testing Offline Controller on Online A* algorithm from specified start to goal points. From
right to left, the results for point sets D, E, and F.
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2.2 Online Controller

2.2.1 Implementation and Testing (Q10)

Putting it all together, my Online Controller can drive the paths as they are explored by the Online A* algorithm.

This required a large change to my high level controller. Previously, I adjusted the path to have a wide berth around

obstacles. This required seeing into the ’future’ and knowing if the goal cell had a neighboring occupied cell. This

time I used the information of the cells neighboring the currently occupied cell. The high level controller only

modified the path if the next goal cell or way-point was located diagonally from the current cell. This is because

moving between adjacent cells directly does not present a risk of hitting obstacles. But often when moving between

diagonal cells directly with a neighboring obstacle, the robot will clip the edge of the obstacle. Thus, in the case that

there is a diagonal command and a neighboring obstacle, my high level controller adds an additional goal cell that

is adjacent to the current cell. In essence, this connects the A* path with entirely adjacent cells. This method avoids

collisions with obstacles while also using only information available to the robot. See the results in Figure 8

Figure 8: Results from testing Online Controller on Online A* algorithm from specified start to goal points. From
right to left, the results for point sets D, E, and F. Notice the augmented target cells.

2.2.2 Performance Comparison (Q11)

To compare the performance of the controller in the two grid resolutions, I ran the Online A* and the controller on

the set of points A, B, and C. Results in Figure 9 appear as if the robot performs better in the lower resolution grid,

since the paths are mostly straight and there is a wide berth given to the obstacles. I would actually agree with this

assessment because if we consider the robot paths in the finer grid, the robot path is extremely close to the obstacles.

While we have inflated the size of them to account for this, the small grid size forces the robot to be close to the

obstacle. For this reason, I would argue that there is an advantage to using the larger grid size in the real world.

Beyond this effect, however, I do not see a discernible difference in the performance of the controller.
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Figure 9: Results from testing Online Controller on Online A* algorithm from specified start to goal points. From
right to left, the results for point sets A, B, and C. Same for top and bottom rows, using different grid resolutions.

2.2.3 Real World Application (Q12)

As I mentioned in the section above, the transition from this idealized grid world to the real world requires extra

consideration. The issue of the grid size may be addressed by adjusting the grid size to appropriately match that

of the robot and obstacles. Beyond this, there are several assumptions that we have made in our analysis that will

haunt us in the real world. Primarily, we have disregard any part of sensing in this assignment. We assume that

somehow the robot detects that its neighbors are occupied, or that cells across the map are occupied. While this

makes the problem much easier, it skips a vital step in bringing a simulation to reality. We would likely need Lidar

or sonar sensor that can detect objects. Even the best sensors still have some uncertainty, which would require

further processing or stochastic methods to account for. Furthermore, we have assumed that the robot has a precise

localization system. Although we did introduce noise, we assumed that the robot would be able to figure out where

it was despite that. In reality, localization is a huge challenge that would require more sensing and perhaps using

filtering methods such as Kalman Filters to localize the position of the robot as it drove the paths.
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2.2.4 Working in Continuous Space

The A* algorithm requires the use of a occupancy grid representation of the world. I find this to be annoying, so I

implemented a version of potential fields to help control the robot in continuous space. Instead of assigning specific

cells as occupied, potential fields methods use a global equation to describe the arena. The equation is representative

of a force that is pushing the robot towards the goal state (and away from obstacles). So, I represented the goal

state as a 3-D Gaussian distribution with positive amplitude, and obstacles as those with negative amplitudes. This

formulation created a potential field as seen in Figure 10. Then, using gradient ascent techniques (as high level

control) and the low level controller I developed above, the robot was able to find the goal position on 4 out of 6 of

the point sets. In the 2 that it failed, the robot got stuck on local maximums or was not able to reach the goal within

tolerance because the goal was close to an obstacle. Implementing potential fields shows how continuous methods

are another great alternative when mapping for mobile robotics.

Figure 10: Results from testing potential fields from specified start to end points. From right to left, the results for
point sets A, C, D, and E.
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